Saturday, February 16, 2013

The Poisson summation formula, Minkowski's first theorem, and the density of sphere packings

I opened by accident a paper by Henry Cohn and Noam Elkies, New upper bounds on sphere packings I, Annals of Mathematics, 157 (2003), 689–714, and I had the good surprise to see a beautiful application of the Poisson summation formula to upper bounds for the density of sphere packings.

In fact, their argument is very close to a proof of the first theorem of Minkowski about lattice points in convex bodies which I had discovered in 2009. However, a final remark in their paper, appendix C, shows that this proof is not really new. Anyway, the whole story is nice enough to prompt me to discuss it in this blog.

1. The Poisson formula

I first recall the Poisson formula: let $f\colon\mathbf R^n\to \mathbf R$ be a continuous function whose Fourier transform $\hat f$ is integrable, let $L$ be a lattice in $\mathbf R^n$, and let $L'$ be the dual lattice of $L$. Then, 
\[ \sum_{x\in L} f(x) = \frac1{\mu(\mathbf R^n/L)}\sum_{y\in L'} \hat f(y). \]

In fact, one needs a bit more about $f$ that the above hypotheses (but we'll ignore this in the sequel). For example, it is sufficient that $f(x)$ and $\hat f(x)$ be bounded from above by a multiple of $1/(1+\| x\|)^{n+\epsilon}$, for some strictly positive real number $\epsilon$.

2. Minkowski's first theorem

Let $B$ a closed symmetric convex neighborhood of $0$. Minkowski's first theorem bounds from below the cardinality of $B\cap L$. A natural idea would be to apply the Poisson summation formula to the indicator function $f_B$ of $B$. However, $f_B$ is not continuous, so we need to replace $f_B$ by some function $f$ which satisfies the following properties:
  • $f\leq f_B$, so that $\#(B\cap L)= \sum_{x\in L} f_B(x)\geq \sum_{x\in L} f(x) $;
  • $\hat f\geq 0$, so that $\sum_{y\in L'} \hat f(y) \geq \hat f(0)$.
The second condition suggest to take for $f$ a function of the form $g*\check g$, so that $\hat f=|\hat g| ^2$. Then, the first condition will hold outside of $B$ if $g$ is supported in $\frac12 B$. Let's try $g=cf_{B/2}$ for some positive real number $c$. For all $x\in\mathbf R^n$,  
\[ f(x) \leq f(0) =c^2 \int_{\mathbf R^n} f_{B/2}(x) f_{B/2}(-x) = c^2 \mu(B/2) = c^2 \mu(B)/2^n. \]
It suffices to choose $c=(2^n/\mu(B))^{1/2}$.
On the other hand, 
\[ \hat g(0) = \int_{\mathbf R^n} f_{B/2}(x) = \mu(B/2)=c\mu(B)/2^n=1/c. \]
Finally, the Poisson formula implies
$\displaystyle \#(B\cap L) \geq \sum_{x\in L} f(x)  = \frac1{\mu(\mathbf R^n/L)} \sum_{y\in L'}\hat f(y)  \geq \frac1{\mu(\mathbf R^n/L)} \hat f(0) $
$\displaystyle = \frac1{\mu(\mathbf R^n/L)} | \hat g(0)|^2  = \frac{\mu(B)}{2^n}\mu(\mathbf R^n/L).$

This is exactly Minkowski's first theorem!

Of course, one may consider apply this argument to other functions $f$. In the case where $B$ is an Euclidean ball, a natural choice consists in taking a Gaussian $f(x)=a\exp(-b\|x\|^2)$, since then $\hat f$ has the same form. This is what has essentially been done by Schoof and van der Geer in their paper Effectivity of Arakelov divisors and the analogue of the theta divisor of a number field, Selecta Math. New Ser. 6 (2000), 377–398, and Damian Rössler independently. Indeed, up to normalization factors, the left hand side of the Poisson summation formula is then interpreted as the exponential of the $h^0$ of a line bundle over an arithmetic curve, and the Poisson summation formula itself is the analogue of Serre's duality theorem in Arakelov geometry. As Jean-Benoît Bost explained to me, Gaussian functions provide an inequality for $\#(B\cap L)$ which is sharper than Minkowski's first theorem. The details of the computation can be found in my notes about Arakelov geometry (beware, these are mostly a work in slow progress). I have not tried to look for optimal functions beyond that case.

3. The theorem of Cohn-Elkies

We consider a sphere packing, that is a set of points in $\mathbf R^n$ with mutual distances at least 1,
and we want to bound from above its density, that is the ratio of volume occupied by balls of radius $1/2$ centered at these spheres. One may think of a lattice packing, the particular case where the centers of these spheres are exactly the points of a lattice $L$ or, more generally, of periodic packing when the centers of the spheres are finitely many translates $v_1+L,\dots,v_N+L$ of  a lattice $L$. In fact, Cohn and Elkies argue that it suffices to study such periodic packings (repeating periodically an arbitrarily large part of the sphere packing), so we shall do like them and assume that our sphere packing is periodic. 

Now, let $f$ be a real valued function on $\mathbf R^n$ satisfying the following properties:
  • $f$ is continuous, integrable on $\mathbf R^n$ as well as its Fourier transform.
  • $f(0)>0$ and $f(x)\leq 0$ for $\| x\|\geq 1$;
  • $\hat f(x)\geq 0$ for all $x$.
Then, the density $\Delta$ of the sphere packing satisfies 
\[ \Delta \leq 2^{-n} \mu(B) \frac{f(0)}{\hat f(0)}, \]
where $\mu(B)$ is the volume of the unit ball.

We assume that no difference $v_i-v_j$ is a point of the lattice $L$ (otherwise, we can exclude one translate from the list). With the above notation, the fundamental parallelepiped of the lattice contains exactly $N$ balls of radius $1/2$, hence 
\[ \Delta= 2^{-n}\mu(B) \frac N{\mu(\mathbf R^n/L)}. \]
For any $v\in\mathbf R^n$, the Poisson summation formula for $x\mapsto f(x+v)$ writes
\[ \sum_{x\in L} f(x+v) = \frac1{\mu(L)} \sum_{y\in L'} e^{2\pi i \langle v,y\rangle} \hat f(y), \]
hence
$\displaystyle \sum_{1\leq j,k\leq N} \sum_{x\in L} f(x+v_j-v_k)  = \frac1{\mu(L)} \sum_{y\in L'}\hat f(y)  \sum_{j,k=1}^N e^{2\pi i \langle v_j-v_k,y\rangle}$ 
$\displaystyle = \frac1{\mu(L)} \sum_{y\in L'}\hat f(y) \left| \sum_{j=1}^N e^{2\pi i \langle v_j,y\rangle} \right|^2.$
All terms of the right hand side are positive or null, so that we can bound it from below by
the term for $y=0$, hence
\[ \sum_{1\leq j,k\leq N} \sum_{x\in L} f(x+v_j-v_k) \geq N^2 \frac{\hat f(0)}{\mu(\mathbf R^n/L)}. \]
Now, there is a sphere of our packing centered at $x+v_j$, and another at $v_k$,
so that $\| x+v_j-v_k\|\geq 1$ unless $x+v_j=v_k$, that is $v_k-v_j=x$ hence $x=0$ and $v_j=v_k$. In the first case, the value of $f$ at $x+v_j-v_k$ is negative or null; in the latter, it equal $f(0)$. Consequently, the left hand side of the previous inequality is at most $Nf(0)$.  Finally, $\displaystyle N f(0) \geq N^2 \hat f(0)/\mu(\mathbf R^n/L)$, hence the desired inequality.

Monday, February 11, 2013

The Poisson summation formula, arithmetic and geometry

François Loeser and I just uploaded a paper on arXiv about Motivic height zeta functions. That such a thing could be possible is quite funny, so I'll take this opportunity to break a long silence on this blog.

In Diophantine geometry, an established and important game consists in saying as much as possible of the solutions of diophantine equations. In algebraic terms, this means proving qualitative or quantitative properties of the set of integer solutions of polynomial equations with integral coefficients. In fact, one can only understand something by making the geometry more apparent; then, one is interested in integral points of schemes $X$ of finite type over the ring $\mathbf Z$ of integers. There are in fact two sub-games: one in which one tries to prove that such solutions are scarce, for example when $X$ is smooth and of general type (conjecture of Mordell=Faltings's theorem, conjecture of Lang) ; the other in which one tries to prove that there are many solutions —then, one can even try to count how many solutions there are of given height, a measure of their size. There is a conjecture of Manin predicting what would happen, and our work belongs to this field of thought.

Many methods exist to understand rational points or integral points of varieties. When the scheme carries an action of an algebraic group, it is tempting to try to use harmonic analysis. In fact, this has been done since the beginnings of Manin's conjecture when Franke, Manin, Tschinkel showed that when the variety is a generalized flag variety ($G/P$, where $G$ is semi-simple, $P$ a parabolic subgroup, for example projective spaces, grassmannians, quadrics,...), the solution of Manin's question was already given by Langlands's theory of Eisenstein series. Later, Batyrev and Tschinkel proved the case of toric varieties, and again with Tschinkel, I studied the analogue of toric varieties when the group is not a torus but a vector space. In these two cases, the main idea consists in introducing a generating series of our counting problem, the height zeta function, and establishing its analytic properties. In fact, this zeta function is a sum over rational points of a height function defined on the adelic space of the group, and the Poisson summation formula rewrites this sum as the integral of the Fourier transform of the height function over the group of topological characters. What makes the analysis possible is the fact that, essentially, the trivial character carries all the relevant information; it is nevertheless quite technical to establish what happens for other characters, and then to check that the behavior of the whole integral is indeed governed by the trivial character.

In mathematics, analogy often leads to interesting results. The analogy between number fields and function fields suggests that diophantine equations over the integers have a geometric analogue, which consists in studying morphisms from a curve to a given variety. If the ground field of the function field is finite, the dictionary goes quite far; for example, Manin's question has been studied a lot by Bourqui who established the case of toric varieties. But when the ground field is infinite, it is no more possible to count solutions of given height since they will generally be infinite.

However, as remarked by Peyre around 2000, all these solutions, which are morphisms from a curve to a scheme, form themselves a scheme of finite type. So the question is to understand the behavior of these schemes, when the height parameter grows to infinity. In fact, in an influential but unpublished paper, Kapranov had already established the case of flag varieties (without noticing)! The height zeta function is now a formal power series whose coefficients are algebraic varieties; one viewes them as elements of the Grothendieck ring of varieties, the universal ring generated by varieties with addition given by cutting-and-pasting, and multiplication given by the product of varieties. This ring is a standard tool of motivic integration (as invented by Kontsevich and developed by Denef and Loeser, and many people since). That's why this height zeta function is called motivic.

What we proved with François is a rationality theorem for such a motivic height function, when the variety is an equivariant compactification of a vector group. This means that all this spaces of morphisms, indexed by some integer, satisfy a linear dependence relation in the Grothendieck ring of varieties! To prove this result, we rely crucially on an analogue of the Poisson summation formula in motivic integration, due to Hrushovski and Kazhdan, which allows us to perform a similar analysis to the one I had done with Tschinkel in a paper that appeared last year in Duke Math. J.

Many things remain puzzling. The most disturbing is the following. If you read Tate's thesis, or Weil's Basic Number Theory, you'll see that the Riemann Roch formula and Serre's duality theorem for curves over finite fields are consequences of the Poisson summation formula in harmonic analysis. In motivic integration, things go the other way round: if one unwinds all the definitions (we explain this in our paper with François), the motivic Poisson summation formula boils down to the Riemann-Roch and Serre theorems. So, in principle, our proof could be understood just from these two theorems. But this is not clear at all how to do this directly: passing through the looking-glass to go computing our height zeta function in the Fourier world appears to be non-trivial and efficient...

Wednesday, December 5, 2012

Product of two quotient spaces - an frequent and (in)famous mistake

The first edition of Bourbaki's General Topology (chapter I, §9, p. 56) contains the following theorem.

Proposition 3. Soient $E$, $F$ deux espaces topologiques, $R$ une relation d'équivalence dans $E$, $S$ une relation d'équivalence dans $F$. L'application canonique de l'espace produit $(E/R) \times (F/S)$ sur l'espace quotient $(E\times F)/(R\times S)$ est un homéomorphisme.

It is followed by a very convincing proof. However, the theorem is wrong. The subsequent editions give an example where the spaces are not homeomorphic, even when one of the equivalence relation is equality.

I finally understood where the mistake is. It is in the very statement! Indeed, there is a canonical map, say $h$, between those two spaces, but it goes the other way round, namely from $(E\times F)/(R\times S)$ to $(E/R)\times (F/S)$. This map is continuous, as it should be. But Bourbaki, assuming that the natural canonical map goes the other way round, pretended that $h^{-1}$ is continuous, and embarked in proving that its reciprocal bijection, $h$, is also continuous, what it is...

There are cases where one would like this theorem to holds, for example when one discusses topologies on the fundamental group. Indeed, the fundamental group of a pointed space $(X,x)$ is a quotient of the space of loops based at $x$ on $X$ for the pointed-homotopy relation, hence can be endowed with the quotient of the topology of compact convergence (roughly, uniform convergence on compact sets). Multiplication of loops is continuous. However, the resulting group law on $\pi_1(X,x)$ need not be.

The mistake appears in the recent litterature, see for example this paper, or that one (which has been even featured as «best AMM paper of the year» in 2000...). MathScinet is not aware of the flaws in those papers... Fortunately, MathOverflow is!

Tuesday, November 27, 2012

Finite choices

The axiom of choice says that an arbitrary product $\prod_{i\in I} A_i$ of non-empty sets $A_i$ indexed by a set $I$ is non-empty. It is well known that this axiom does not follow from the other axioms of Zermelo-Fraenkel theory. Even finite choices, that is, this statement restricted to the case where all sets are finite, is not a consequence. Even 2-choices, when one assumes that $A_i$ has two elements!

For each integer $n$, call  ${\rm AC}(n)$ the axiom of choice restricted to families $(A_i)$ where $A_i$ has $n$ elements. 

Tarski proved the funny following fact: ${\rm AC}(2) \Rightarrow {\rm AC}(4)$—if you know how to choose between 2 elements, you can choose between 4.

The proof is in fact quite easy. Consider a family $(A_i)$ of sets with 4 elements. I will use choice functions furnished by ${\rm AC}(2)$ to pick-up one preferred element from $A_i$. For simplicity, label the elements of $A_i$ as $\{a,b,c,d\}$ and remove the index $i$. Then, consider the set  $\{\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\}\}$ of all pairs of elements of $A_i$. The hypothesis ${\rm AC}(2)$ allows to choose, for each of those pairs, one preferred element. Call $n_a,n_b,n_c,n_d$ the number of times $a,b,c,d$ has been chosen; one thus has $n_a+n_b+n_c+n_d=6$ and consider those elements which have been chosen the most often, those for which $n_?$ is maximal.
  • If there is only one, let's choose it. (This happens in repartitions like $(3,1,1,1)$, etc.)
  • If there are three such elements (the repartition must be $(2,2,2,0)$), let's choose the unique one which has never been chosen.
  • There can't be four such elements because 4 does not divides 6.
  • If there are two (repartition $(2,2,1,1)$), then use your 2-choice function on this pair!

The other funny, but more difficult, thing, is that ${\rm AC}(2)$ does not imply ${\rm AC}(3)$! Why? because the group $\{\pm1\}$ can act without fixed points on a 2-elements set but cannot on a 3-elements set.  I hope to be able to say more on this another day.

Wednesday, November 21, 2012

Misconceptions about $K_X$

This is the title of a very short paper by Steven Kleiman published in L'enseignement mathématique, and which should be studied by every young student in scheme theory.

Here, $X$ is a scheme and $K_X$ is the sheaf of rational functions on $X$.

The misconceptions are the following, where we write $\mathop{Frac}(A)$ for the total ring of fractions of a ring $A$, namely the localized ring with respect to all element which are not zero divisors.

  1. $K_X$ is not the sheaf associated to the presheaf $U\mapsto \mathop{Frac}(\Gamma(U,O_X))$; indeed, that map may not be a presheaf.
  2. The germ $K_{X,x}$ of $K_X$ at a point $x$ may not be the total ring of fractions of the local ring $O_{X,x}$, it may be smaller.
  3. If $U=\mathop{Spec}(A)$ is an affine open subset of $X$, then $\Gamma(U,K_X)$ is not necessarily equal to $\mathop{Frac}(A)$.
These mistakes can be found in the writings of very good authors, even Grothendieck's EGA IV... 
By chance, the first one is corrected in a straightforward way, and the other two work when the scheme $X$ is locally noetherian.

Thanks to Antoine D. for indicating to me this mistake, and to Google for leading me to Kleiman's paper.

The category of sets and its opposite

In the book Categories and sheaves by Kashiwara and Shapira, I found a nice argument for the fact that the category of sets is not equivalent to its opposite: they write « every morphism to the initial object is an isomorphism ». Of course!

In the category Sets, the initial object is the empty set, which means that for every set $A$, there is a unique map from $\emptyset$ to $A$. Now, if we reverse the process, namely, if we consider a set $A$ and a map $f\colon A\to \emptyset$, we see that $A$ must be empty and $f$ is a bijection, hence an isomorphism in the category of sets.

In the opposite category, all arrows are reversed, the initial object becomes the terminal object, etc. Isomorphisms are (reversed) maps which have an inverse, so isomorphisms are still given by bijections. A terminal object of Sets is one-element set, $\{x\}$ (you could take the set $1=\{\emptyset\}$ if, like von Neumann, you believe that numbers are sets). Indeed, there is a unique map from any set to a one-element set. Reverse the process again and consider a set $A$ and a map $f\colon \{x\} \to A$. This amounts to choosing an element of $A$, but such maps are not bijections in general, unless $A$ has itself only one element.

Sunday, November 18, 2012

The van Kampen Theorem

Let me recall the statement of this theorem.

Theorem. Let $X$ be a topological space, let $U,V$ be connected open subsets of $X$ such that $W=U\cap V$ is connected and let $x$ be a point of $U\cap V$. Then, the fundamental group $\pi_1(X,x)$ is the amalgamated product $\pi_1(U,x) *_{\pi_1(W,x)} \pi_1(V,x)$, that is, the quotient of the free product of the groups $\pi_1(U,x)$ and $\pi_1(V,x)$ by the normal subgroup generated by the elements of the form $i_U(c)i_V(c)^{-1}$, where $i_U$ and $i_V$ are the natural injections from the groups $\pi_1(U,x)$ and $\pi_1(V,x)$ respectively in their free product.

The classical proof of this result in topology books relies decomposes a loop at $x$ as a product of loops at $x$ which are either contained in $U$, or in $V$.

(In fact, van Kampen proves a theorem which is quite different at first sight.)

It has been long recognized that there is a completely different approach is possible, from which all loops are totally absent. For this proof we make a supplementary assumption, namely that our spaces are « semi-locally simply connected » : Any point $a$ of $X$ has a neighborhood $A$ such that the morphism $\pi_1(A,a)\to \pi_1(X,a)$ is trivial.

When $X$ is a connected slsc space together with a point $x$, the theory of the fundamental group is related to the theory of coverings,under the form of an equivalence of categories between coverings of $X$ and sets with an action of $\pi_1(X,x)$. The equivalence of categories is explicit; it maps a covering $p\colon Y\to X$ to the fiber $p^{-1}(x)$ on which $\pi_1(X,x)$ acts naturally via the path-lifting property of coverings (given $y\in p^{-1}(x)$, any loop $c$ at $x$ lifts uniquely to a path with origin $y$, the endpoint of which is $c\cdot y$).

Given this equivalence, one can prove the van Kampen Theorem very easily in two steps. First of all, one observes that it is equivalent to have a covering of $X$ as to have a covering of $U$ and a covering of $V$ together with an identification of these coverings above $W$. A covering of $U$ corresponds to a set $A$ with an action of $\pi_1(U,x)$; a covering of $V$ corresponds to a set $B$ with an action of $\pi_1(V,x)$; an identification of these coverings above $W$ corresponds to a bijection from $A$ to $B$ which is compatible with the two actions of $\pi_1(W,x)$ acting on $A$ via the morphism $\pi_1(W,x)\to \pi_1(U,x)$ and on $B$ via the morphism $\pi_1(W,x)\to \pi_1(V,x)$. It is harmless to assume that $A=B$ and that the bijection from $A$ to $B$ is the identity. Now, a covering of $X$ corresponds to a set $A$ together with two actions of the groups $\pi_1(U,x)$ and $\pi_1(V,x)$ such that the two actions of $\pi_1(W,x)$ are equal. This is precisely the same as a set $A$ together with an action of the amalgamated product $\pi_1(U,x)*_{\pi_1(W,x)}\pi_1(V,x)$. CQFD.

The same proof applies and allows to describe the fundamental group of an union of spaces in more general contexts. For example, let us use the same method to understand the fundamental group of the circle $\mathbf S_1$. It is clear that a circle is nothing but an interval $ [0,1]$ of which the two endpoints are glued, and a covering of the circle corresponds to a covering $p\colon X\to [0,1]$ of the interval $[0,1]$ together with an identification of the fibers at $0$ and~$1$. Now, a covering of the interval can be written as a product $A\times [0,1]$ (where $A$ is the fiber at $0$, say). Consequently, identifying the fibers at $0$ and $1$ means giving yourself a bijection of $A$ to $A$. In other words, a covering of the circle « is »  a set $A$ together with a permutation of $A$, in other words, a set $A$ with an action of the additive group $\mathbf Z$. Moreover, the obvious loop is the image by the glueing map $[0,1]\to\mathbf S_1$ of the obvious path joining $0$ to $1$ so that this loop is the generator of $\pi_1(\mathbf S_1,p(0))$.

Observe that the latter example is not an instance of the van Kampen Theorem. One could get it via a groupoid-version of van Kampen.

All of this is more or less explained in the following texts:

  • Adrien and Régine Douady, Algèbre et théories galoisiennes, Cassini 2005.
  • Ronald Brown, Topology and Groupoids, Booksurge Publishing, 2006.
  • I remember having read an old Bourbaki Tribu from the 50sby Cartan, Eilenberg and/or Weil explaining this, but I cannot find it anymore on the archive. :-(