Showing posts with label motivic integration. Show all posts
Showing posts with label motivic integration. Show all posts

Saturday, March 16, 2024

Combinatorics of the nilpotent cone

$\global\def\Card{\operatorname{Card}}\global\def\GL{\mathrm{GL}}\global\def\im{\operatorname{im}}\gdef\KVar{\mathrm{KVar}}$

Let $n$ be an integer and $F$ be a field. Nilpotent matrices $N\in \mathrm M_n(F)$ are those matrices for which there exists an integer $p$ with $N^p=0$. Their characteristic polynomial is $\chi_N(T)=T^n$, and they satisfy $N^n=0$, which shows that the set $\mathscr N_n$ of nilpotent matrices is an algebraic variety. The equation $N^n=0$ is homogeneous of degree $n$, so that $\mathscr N_n$ is a cone.

The classification of nilpotent matrices is an intermediate step in the theory of Jordan decomposition: In an adequate basis, a nilpotent matrix can be written as a diagonal block matrix of “basic” nilpotent matrices, $p \times p$ matrices of the form \[ \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & & & \vdots \\ 0 & 1 & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & 0 & 1 & 0\end{pmatrix} \] whose minimal polynomial is $T^p$. The sum of the sizes of these blocks is $n$ and in this way, it is associated with any $n\times n$ nilpotent matrix a partition $\pi$ of~$n$. It is known that two nilpotent matrices are conjugate if and only if they are associated with the same partition. For any partition $\pi$ of~$n$, let us denote by $J_\pi$ the corresponding matrix whose sizes of blocks are arranged in increasing order, and $\mathscr N_\pi$ the set of nilpotent matrices that are associated with the partition $\pi$.

The theorem of Fine and Herstein (1958)

Having to teach “agrégation” classes made me learn about a classic combinatorial result: counting the number of nilpotent matrices when $F$ is a finite field.

Theorem (Fine, Herstein, 1958). — Let $F$ be a finite field with $q$ elements. The cardinality of $\mathscr N_n(F)$ is $q^{n^2-n}$. Equivalently, the probability that an $n\times n$ matrix with coefficients in $F$ be nilpotent is $q^{-n}$.

The initial proof of this results relies on the action of $\GL_n(F)$ on $\mathscr N_n(F)$: we recalled that the orbits correspond with the partitions of $n$, hence a decomposition \[ \Card(\mathscr N_n(F)) = \sum_{\pi} \Card(\mathscr N_\pi(F)). \] We know that $\mathscr N_\pi(F)$ is the orbit of the matrix $J_\pi$ under the action of $\GL_n(F)$. By the classic orbit-stabilizer formula, one thus has \[ \Card(\mathscr N_\pi(F)) = \frac{\Card(\GL_n(F))}{\Card(C_\pi(F))}, \] where $C_\pi(F)$ is the set of matrices $A\in\GL_n(F)$ such that $AJ_\pi=J_\pi A$. The precise description of $C_\pi(F)$ is delicate but their arguments go as follow.

They first replace the group $C_\pi(F)$ by the algebra $A_\pi(F)$ of all matrices $A\in\mathrm M_n(F)$ such that $AJ_\pi=J_\pi A$. For any integer, let $m_i$ be the multiplicity of an integer $i$ in the partition $\pi$, so that $n=\sum i m_i$. The block decomposition of $J_\pi$ corresponds with a decomposition of $F^n$ as a direct sum of invariant subspaces $V_i$, where $V_i$ has dimension $i m_i$. In fact, $V_1=\ker(J_\pi)$, $V_1\oplus V_2=\ker(J_\pi^2)$, etc. This shows that $A_\pi(F)$ is an algebra of block-triangular matrices. Moreover, the possible diagonal blocks can be shown to be isomorphic to $\mathrm M_{m_i}(F)$. In other words, we have a surjective morphism of algebras \[ A_\pi(F) \to \prod_i \mathrm M_{m_i}(F), \] whose kernel consists of nilpotent matrices. In particular, the proportion of invertible elements in $A_\pi(F)$ is equal to the proportion of invertible elements in the product $\prod_i \mathrm M_{m_i}(F)$.

Ultimately, Fine and Herstein obtain an explicit sum over the set of partitions of $n$ which they prove equals $q^{n^2-n}$, after an additional combinatorial argument.

Soon after, the theorem of Fine and Herstein was given easier proofs, starting from Gerstenhaber (1961) to Kaplansky (1990) and Leinster (2021).

A proof

The following proof is borrowed from Caldero and Peronnier (2022), Carnet de voyage en Algébrie. It can be seen as a simplification of the proofs of Gerstenhaber (1961) and Leinster (2021).

Let us start with the Fitting decomposition of an endomorphism $u\in \mathrm N_n(F)$: the least integer $p$ such that $\ker(u^p)=\ker(u^{p+1})$ coincides with the least integer $p$ such that $\im(u^p)=\im(u^{p+1})$, and one has $F^n=\ker(u^p)\oplus \im(u^p)$. The subspaces $N(u)=\ker(u^p)$ and $I(u)=\im(u^p)$ are invariant under $u$, and $u$ acts nilpotently on $\ker(u^p)$ and bijectively on $\im(u^p)$. In other words, we have associated with $u$ complementary subspaces $N(u)$ and $I(u)$, a nilpotent operator of $N(u)$ and an invertible operator on $I(u)$. This map is bijective.

For any integer $d$, let $\nu_d$ be the cardinality of nilpotent matrices in $\mathrm M_d(F)$, and $\gamma_d$ be the cardinality of invertible matrices in $\mathrm M_d(F)$. Let also $\mathscr D_d$ be the set of all pairs $(K,I)$, where $K$ and $I$ are complementary subspaces of dimensions $d$, $n-d$ of $F^n$. We thus obtain \[ n^2 = \sum_{(K,I)\in\mathscr D_d} \nu_d \cdot \gamma_{n-d}. \] We need to compute the cardinality of $\mathscr D_d$. In fact, given one pair $(K,I)\in\mathscr D_d$, all other are of the form $(g\cdot K,g\cdot I)$, for some $g\in\GL_n(F)$: the group $\GL_n(F)$ acts transitively on $\mathscr D_d$. The stabilizer of $(K,I)$ can be identified with $\GL_d(F)\times \GL_{n-d}(F)$. Consequently, \[ \Card(\mathscr D_d) = \frac{\Card(\GL_n(F))}{\Card(\GL_d(F)\Card(\GL_{n-d}(F))} = \frac{\gamma_n}{\gamma_d \gamma_{n-d}}. \] We thus obtain \[ q^{n^2} = \sum_{d=0}^n \frac{\gamma_n}{\gamma_d \gamma_{n-d}} \nu_d \gamma_{n-d} = \gamma_n \sum_{d=0}^n \frac{\nu_d}{\gamma_d}. \] By subtraction, we get \[ \frac{\nu_n}{\gamma_n} = \frac {q^{n^2}}{\gamma_n} - \frac{q^{(n-1)^2}}{\gamma_{n-1}},\] or \[ \nu_n = q^{n^2} - q^{(n-1)^2} \frac{\gamma_n}{\gamma_{n-1}}. \] It remains to compute $\gamma_n$: since an invertible matrix consists of a nonzero vector, a vector which does not belong to the line generated by the first one, etc., we have \[ \gamma_n = (q^n-1) (q^n-q)\dots (q^n-q^{n-1}). \] Then, \[ \gamma_n = (q^n-1) q^{n-1} (q^{n-1}-1)\dots (q^{n-1}-q^{n-2}) = (q^n-1)q^{n-1} \gamma_{n-1}. \] We thus obtain \[ \nu_n = q^{n^2} - q^{(n-1)^2} (q^n-1) q^{n-1} = q^{n^2} - q^{(n-1)^2} q^{2n-1} + q^{(n-1)^2} q^{n-1} = q^{n^2-n}, \] as claimed.

The proof of Leinster (2021)

Leinster defines a bijection from $\mathscr N_n(F)\times F^n$ to $\mathrm M_n(F)$. The definition is however not very canonical, because he assumes given, for any subspace $V$ of $F^n$, a basis of $V$.

Take a pair $(u,x)$, where $u\in\mathscr N_n(F)$ and $x\in F^n$ and consider the subspace $V_x=\langle x,u(x),\dots\rangle$, the smallest $u$-invariant subspace of $F^n$ which contains $x$. To describe $u$, we observe that we know its restriction to $V_x$, and we need to describe it on the chosen complementary subspace $V'_x$.

To that aim, we have to give ourselves an endomorphism $u'_x$ of $V'_x$ and a linear map $\phi_x\colon V'_x\to V_x$. Since we want $u$ to be nilpotent, it is necessary and sufficient to take $u'_x$ nilpotent.

Instead of considering $\phi_x\colon V'_x\to V_x$, we can consider the map $y\mapsto y+\phi_x(y)$. Its image is a complement $W_x$ of $V_x$ in $F^n$, and any complement can be obtained in this way. The nilpotent endomorphism $u'_x$ of $V'_x$ transfers to a nilpotent endomorphism $w_x$ of $W_x$.

All in all, what the given pair $(u,x)$ furnishes is a subspace $V_x$ with a basis $(x_1=x,x_2=u(x),\dots)$, a complement $W_x$, and a nilpotent endomorphism $w_x$ of $W_x$. This is more or less what the Fitting decomposition of an endomorphism gives us! Recall that $V_x$ was assumed to have been given a basis $(e_1,\dots,e_p)$. There exists a unique automorphism of $V_x$ which maps $e_i$ to $u^{i-1}(x)$ for all $i$. In other words, we have a pair of complementary subspaces $(V_x,W_x)$, a linear automorphism of $V_x$, and a nilpotent automorphism of $W_x$. By the Fitting decomposition, these data furnish in a bijective way an endomorphism of $F^n$, and that concludes the proof.

A remark about motivic integration

The framework of motivic integration suggests to upgrade these combinatorial results into equalities valid for all field $F$, which hold in the Grothendieck ring of varieties $\KVar_F$. As an abelian group, it is generated by symbols $[X]$, for all algebraic varieties $X$ over $F$, with relations $[X]=[Y]+[X\setminus Y]$, whenever $Y$ is a closed subvariety of $X$. The ring structure is defined so that the formula $[X]\cdot[Y]=[X\times Y]$ for all algebraic varieties $X$ and $Y$ over $F$.

By construction of this ring, equalities $[X]=[Y]$ in $\KVar_F$ imply that many invariants of $X$ and $Y$ coincide. In particular, when $F$ is a finite field, they will have the same number of points.

The question is thus to compute the class $[\mathscr N_n]$ of the variety $\mathscr N_n$, for any field $F$. The proofs that I described above can be more or less transferred to this context and imply the following theorem. We denote by $\mathbf L\in \KVar_F$ the class of the affine line $\mathbf A^1$.

Theorem. — One has an equality $[\mathscr N_n] \mathbf L^n = \mathbf L^{n^2}$ in the localization of the Grothendieck ring $\KVar_F$ by the element $(\mathbf L-1)\dots(\mathbf L^{n-1}-1)$.

The following question is then natural. (I have not thought about it at all.)

Question. — Does one have $[\mathscr N_n]=\mathbf L^{n^2-n}$ in $\KVar_F$?

Sunday, February 5, 2017

Counting points and counting curves on varieties — Tribute to Daniel Perrin

$\require{enclose}\def\VarC{\mathrm{Var}_{\mathbf C}}\def\KVarC{K_0\VarC}$
Daniel Perrin is a French algebraic geometer who turned 70 last year. He his also well known in France for his wonderful teaching habilities. He was one of the cornerstones of the former École normale supérieure de jeunes filles, before it merged in 1985 with the rue d'Ulm school. From this time remains a Cours d'algèbre which is a must for all the students (and their teachers) who prepare the agrégation, the highest recruitment process for French high schools. He actually taught me Galois theory (at École normale supérieure in 1990/1991) and Algebraic Geometry (the year after, at Orsay). His teaching restlessly stresses  the importance of examples. He has also been deeply involved in training future primary school teachers, as well as in devising the mathematical curriculum of high school students: he was responsible of the report on geometry. It has been a great honor for me to be invited to lecture during the celebration of his achievements that took place at Orsay on November, 23, 2016.

Diophantine equations are a source of numerous arithmetic problems. One of them has been put forward by Manin in the 80s and consists in studying the behavior of the number of solutions of such equations of given size, when the bound grows to infinity. A geometric analogue of this question considers the space of all curves with given degree which are drawn on a fixed complex projective, and is interested in their behavior when the degree tends to infinity. This was the topic of my lecture and is the subject of this post.

Let us first begin with an old problem, apparently studied by Dirichlet around 1840, and given a rigorous solution by Chebyshev and Cesáro around 1880: the probability that two integers be coprime is equal to $6/\pi^2$. Of course, there is no probability on the integers that has the properties one would expect, such as being invariant by translation, and the classical formalization of this problem states that the numbers of pairs $(a,b)$ of integers such that $1\leq a,b\leq n$ and $\gcd(a,b)=1$ grows as $n^2 \cdot 6/\pi^2$ when $n\to+\infty$,

This can be proved relatively easily, for example as follows. Without the coprimality condition, there are $n^2$ such integers. Now one needs to remove those pairs both of which entries are multiples of $2$, and there are $\lfloor n/2\rfloor^2$ of those, those where $a,b$ are both multiples of $3$ ($\lfloor n/3\rfloor^2$), and then comes $5$, because we have already removed those even pairs, etc. for all prime numbers. But in this process, we have removed twice the pairs of integers both of which entries are multiples of $2\cdot 3=6$, so we have to add them back, and then remove the pairs of integers both of which are multiples of $2\cdot 3\cdot 5$, etc. This leads to the following formula for
the cardinality $C(n)$ we are interested in:

$\displaystyle
 C(n) = n^2 - \lfloor\frac n2\rfloor^2 - \lfloor \frac n3\rfloor^2-\lfloor \frac n5\rfloor^2 - \dots
+ \lfloor \frac n{2\cdot 3}\rfloor^2+\lfloor\frac n{2\cdot 5}\rfloor^2+\dots
- \lfloor \frac n{2\cdot 3\cdot 5} \rfloor^2 - \dots $.

Approximating $\lfloor n/a\rfloor$ by $n/a$, this becomes

$\displaystyle
C(n) \approx  n^2 - \left(\frac n2\right)-^2 - \left (\frac n3\right)^2-\left( \frac n5\rfloor\right)^2 - \dots
+ \left (\frac n{2\cdot 3}\right)^2+\left(\frac n{2\cdot 5}\right)^2+\dots
- \left (\frac n{2\cdot 3\cdot 5} \right)^2 - \dots $

which we recognize as

$\displaystyle
C(n)\approx n^2 \left(1-\frac1{2^2}\right) \left(1-\frac1{3^2}\right)\left(1-\frac1{5^2}\right) \dots
=n^2/\zeta(2)$,

where $\zeta(2)$ is the value at $s=2$ of Riemann's zeta function $\zeta(s)$. Now, Euler had revealed the truly arithmetic nature of $\pi$ by proving in 1734 that $\zeta(2)=\pi^2/6$. The approximations we made in this calculation can be justified, and this furnishes a proof of the above claim.

We can put this question about integers in a broader perspective if we recall that the ring $\mathbf Z$ is a principal ideal domain (PID) and study the analogue of our problem in other PIDs, in particular for $\mathbf F[T]$, where $\mathbf F$ is a finite field; set $q=\operatorname{Card}(\mathbf F)$. The above proof can be adapted easily (with simplifications, in fact) and shows that number of pairs $(A,B)$ of monic polynomials of degrees $\leq n$ such that $\gcd(A,B)=1$ grows as $q^n(1-1/q)$ when $n\to+\infty$. The analogy becomes stronger if one observes that $1/(1-1/q)$ is the value at $s=2$ of $1/(1-q^{1-s})$, the Hasse-Weil zeta function of the affine line over $\mathbf F$.

What can we say about our initial question if we replace the ring $\mathbf Z$ with the PID $\mathbf C[T]$? Of course, there's no point in counting the set of pairs $(A,B)$ of coprime monic polynomials of degree $\leq n$ in $\mathbf C[T]$, because this set is infinite. Can we, however, describe this set? For simplicity, we will consider here the set $V_n$ of pairs of coprime monic polynomials of degree precisely $n$. If we identify a monic polynomial of degree $n$ with the sequence of its coefficients, we then view $V_n$ as a subset of $\mathbf C^{n}\times\mathbf C^n$. We first observe that $V_n$ is an Zariski open subset of $\mathbf C^{2n}$: its complement $W_n$ is defined by the vanishing of a polynomial in $2n$ variables — the resultant of $A$ and $B$.

When $n=0$, we have $V_0=\mathbf C^0=\{\mathrm{pt}\}$.

Let's look at $n=1$: the polynomials $A=T+a$ and $B=T+b$ are coprime if and only if $a\neq b$;
consequently, $V_1$ is the complement of the diagonal in $\mathbf C^2$.

For $n=2$, this becomes more complicated: the resultant of the polynomials $T^2+aT+b$ and $T^2+cT+d$ is equal to $a^2d-abc-adc+b^2-2bd+bc^2+d^2$; however, it looks hard to guess some relevant properties of $V_n$ (or of its complement) just by staring at this equation. In any case, we can say that $V_2$ is the complement in $\mathbf C^4$ of the union of two sets, corresponding of the degree of the gcd of $(A,B)$. When $\gcd(A,B)=2$, one has $A=B$; this gives the diagonal, a subset of $\mathbf C^4$ isomorphic to $\mathbf C^2$; the set of pairs of polynomials $(A,B)$ whose gcd has degree $1$ is essentially $\mathbf C\times V_1$: multiply a pair $(A_1,B_1)$ of coprime polynomials of degree $1$ by an arbitrary polynomial of the form $(T-d)$.
Consequently,
\begin{align}V_2&=\mathbf C^4 - \left( \mathbf C^2 \cup \mathbf C\times V_1\right)\\
&= \mathbf C^4 - \left( \enclose{updiagonalstrike}{\mathbf C^2}\cup \left(\mathbf C\times (\mathbf C^2-\enclose{updiagonalstrike}{\mathbf C})\right)\right)\\
&=\mathbf C^4-\mathbf C^3
\end{align}
if we cancel the two $\mathbf C^2$ that appear. Except that this makes no sense!

However, there is a way to make this computation both meaningful and rigorous, and it consists in working in the Grothendieck ring $\KVarC$ of complex algebraic varieties. Its additive group is generated by isomorphism classes of algebraic varieties, with relations of the form $[X]=[U]+[Z]$ for every Zariski closed subset $Z$ of an algebraic variety $X$, with complement $U=X-Z$. This group has a natural ring structure for which $[X][Y]=[X\times Y]$. Its unit element is the class of the point, $[\mathbf A^0]$ if one wishes. An important element of this ring $\KVarC$ is the class $\mathbf L=[\mathbf A^1]$ of the affine line. The natural map $e\colon \VarC\to \KVarC$ given by $e(X)=[X]$ is the universal Euler characteristic: it is the universal map from $\VarC$ to a ring such that $e(X)=e(X-Z)+e(Z)$ and $e(X\times Y)=e(X)e(Y)$, where $X,Y$ are complex varieties and $Z$ is a Zariski closed subset of $X$.

In particular, it generalizes the classical Euler characteristic, the alternate sum of the dimensions of the cohomology groups (with compact support, if one wishes) of a variety. A subtler invariant of $\KVarC$ is given by mixed Hodge theory: there exists a unique ring morphism $\chi_{\mathrm H}\KVarC\to\mathbf Z[u,v]$ such that for every complex variety $X$, $\chi_{\mathrm H}([X])$ is the Hodge-Deligne polynomial of $X$. In particular, if $X$ is projective and smooth, $\chi_{\mathrm H}([X])=\sup_{p,q} \dim h^q(X,\Omega^p_X) u^pv^q$. If one replaces the field of complex numbers with a finite field $\mathbf F$, one may actually count the numbers of $\mathbf F$-points of $X$, and this furnishes yet another generalized Euler characteristic.

The preceding calculation shows that $e(V_0)=1$, $e(V_1)=\mathbf L^2-\mathbf L$ and $e(V_2)=\mathbf L^4-\mathbf L^3$; more generally, one proves by induction that $e(V_n)=\mathbf L^{2n}-\mathbf L^{2n-1}$ for every integer $n\geq 0$.

Equivalently, one has $e(W_n)=\mathbf L^{2n-1}$ for all $n$. I have to admit that I see no obvious reason for the class of $W_n$ to be equal to that of an affine space. However, as Ofer Gabber and Jean-Louis Colliot-Thélène pointed out to me during the talk, this resultant is the difference of two homogeneous polynomials $p-q$ of degrees $d=2$ and $d+1=3$; consequently, the locus it defines is a rational variety — given $a,b,c$, there is generically a unique $t$ such that $p-q$ vanishes at $(at,bt,ct,t)$.

These three results have a common interpretation if one brings in the projective line $\mathbf P_1$. Indeed, pairs $(a,b)$ of coprime integers (up to $\pm1$) correspond to rational points on $\mathbf P_1$, and if $\mathbf F$ is a field, then pairs $(A,B)$ of coprime polynomials in $\mathbf F[T]$ correspond (up to $\mathbf F^\times$) to elements of $\mathbf P_1(\mathbf F(T))$.
In both examples, the numerical datum $\max(|a|,|b|)$ or $\max(\deg(A),\deg(B))$ is called the height of the corresponding point.

In the case of the ring $\mathbf Z$, or in the case of the ring $\mathbf F[T]$ where $\mathbf F$ is a finite field, one has an obvious but fundamental finiteness theorem: there are only finitely many points of $\mathbf P_1$ with bounded height. In the latter case, $\mathbf C[T]$, this naïve finiteness does not hold. Nevertheless, if one sees $\mathbf P_1(\mathbf C(T))$ as an infinite dimensional variety — one needs infinitely many complex numbers to describe a rational function, then the points of bounded height constitute what is called a bounded family, a “finite dimensional” constructible set.

The last two examples have a common geometric interpretation. Namely, $\mathbf F(T)$ is the field of functions of a projective smooth algebraic curve $C$ over $\mathbf F$; in fact, $C$ is the projective line again, but we may better ignore this coincidence. Then a point $x\in\mathbf P_1(\mathbf F(T))$
corresponds to a morphism $\varepsilon_x\colon C\to\mathbf P_1$, and the formula $H(x)=\deg(\epsilon_x^*\mathscr O(1))$ relates the height $H(x)$ of $x$ to the degree of the morphism $\varepsilon_x$.

Since the notion of height generalizes from $\mathbf P_1$ to projective spaces $\mathbf P_n$ of higher dimension (and from $\mathbf Q$ to general number fields), this suggests a general question. Let $V\subset\mathbf P_n$ be a projective variety over a base field $k$ hat can one say about the set of points $x\in V(k)$ such that $H(x)\leq B$, when the bound $B$ grows to $\infty$?
The base field $k$ can be either a number field, or the field of functions $\mathbf F(C)$ of a curve $C$ over a finite field $\mathbf F$, or the field of functions $\mathbf C(C)$ of a curve over the complex numbers. In the last two cases, the variety can even be taken to be constant, deduced from a variety $V_0$ over $\mathbf F$ or $\mathbf C$.

  1. When $k$ is a number field, this set is a finite set; how does its cardinality grows? This is a question that Batyrev and Manin have put forward at the end of the 80s, and which has attracted a lot of attention since.
  2. When $k=\mathbf F(C)$ is a function field over a finite field, this set is again a finite set; how does its cardinality grows? This question has been proposed by Emmanuel Peyre by analogy with the question of Batyrev and Manin.
  3. When $k=\mathbf C(C)$ is a function field over $\mathbf C$, this set identifies with a closed subscheme of the Grothendieck-Hilbert scheme of $V$; what can one say about its geometry, in particular about its class in $\KVarC$? Again, this question has been proposed by Emmanuel Peyre around 2000.

In a forthcoming post, I shall recall some results on these questions, especially the first one, and in particular explain an approach based on the Fourier summation formula. I will then explain a theorem proved with François Loeser where we make use of Hrushovski–Kazhdan's motivic Fourier summation formula in motivic integration to prove an instance of the third question.

Monday, February 11, 2013

The Poisson summation formula, arithmetic and geometry

François Loeser and I just uploaded a paper on arXiv about Motivic height zeta functions. That such a thing could be possible is quite funny, so I'll take this opportunity to break a long silence on this blog.

In Diophantine geometry, an established and important game consists in saying as much as possible of the solutions of diophantine equations. In algebraic terms, this means proving qualitative or quantitative properties of the set of integer solutions of polynomial equations with integral coefficients. In fact, one can only understand something by making the geometry more apparent; then, one is interested in integral points of schemes $X$ of finite type over the ring $\mathbf Z$ of integers. There are in fact two sub-games: one in which one tries to prove that such solutions are scarce, for example when $X$ is smooth and of general type (conjecture of Mordell=Faltings's theorem, conjecture of Lang) ; the other in which one tries to prove that there are many solutions —then, one can even try to count how many solutions there are of given height, a measure of their size. There is a conjecture of Manin predicting what would happen, and our work belongs to this field of thought.

Many methods exist to understand rational points or integral points of varieties. When the scheme carries an action of an algebraic group, it is tempting to try to use harmonic analysis. In fact, this has been done since the beginnings of Manin's conjecture when Franke, Manin, Tschinkel showed that when the variety is a generalized flag variety ($G/P$, where $G$ is semi-simple, $P$ a parabolic subgroup, for example projective spaces, grassmannians, quadrics,...), the solution of Manin's question was already given by Langlands's theory of Eisenstein series. Later, Batyrev and Tschinkel proved the case of toric varieties, and again with Tschinkel, I studied the analogue of toric varieties when the group is not a torus but a vector space. In these two cases, the main idea consists in introducing a generating series of our counting problem, the height zeta function, and establishing its analytic properties. In fact, this zeta function is a sum over rational points of a height function defined on the adelic space of the group, and the Poisson summation formula rewrites this sum as the integral of the Fourier transform of the height function over the group of topological characters. What makes the analysis possible is the fact that, essentially, the trivial character carries all the relevant information; it is nevertheless quite technical to establish what happens for other characters, and then to check that the behavior of the whole integral is indeed governed by the trivial character.

In mathematics, analogy often leads to interesting results. The analogy between number fields and function fields suggests that diophantine equations over the integers have a geometric analogue, which consists in studying morphisms from a curve to a given variety. If the ground field of the function field is finite, the dictionary goes quite far; for example, Manin's question has been studied a lot by Bourqui who established the case of toric varieties. But when the ground field is infinite, it is no more possible to count solutions of given height since they will generally be infinite.

However, as remarked by Peyre around 2000, all these solutions, which are morphisms from a curve to a scheme, form themselves a scheme of finite type. So the question is to understand the behavior of these schemes, when the height parameter grows to infinity. In fact, in an influential but unpublished paper, Kapranov had already established the case of flag varieties (without noticing)! The height zeta function is now a formal power series whose coefficients are algebraic varieties; one viewes them as elements of the Grothendieck ring of varieties, the universal ring generated by varieties with addition given by cutting-and-pasting, and multiplication given by the product of varieties. This ring is a standard tool of motivic integration (as invented by Kontsevich and developed by Denef and Loeser, and many people since). That's why this height zeta function is called motivic.

What we proved with François is a rationality theorem for such a motivic height function, when the variety is an equivariant compactification of a vector group. This means that all this spaces of morphisms, indexed by some integer, satisfy a linear dependence relation in the Grothendieck ring of varieties! To prove this result, we rely crucially on an analogue of the Poisson summation formula in motivic integration, due to Hrushovski and Kazhdan, which allows us to perform a similar analysis to the one I had done with Tschinkel in a paper that appeared last year in Duke Math. J.

Many things remain puzzling. The most disturbing is the following. If you read Tate's thesis, or Weil's Basic Number Theory, you'll see that the Riemann Roch formula and Serre's duality theorem for curves over finite fields are consequences of the Poisson summation formula in harmonic analysis. In motivic integration, things go the other way round: if one unwinds all the definitions (we explain this in our paper with François), the motivic Poisson summation formula boils down to the Riemann-Roch and Serre theorems. So, in principle, our proof could be understood just from these two theorems. But this is not clear at all how to do this directly: passing through the looking-glass to go computing our height zeta function in the Fourier world appears to be non-trivial and efficient...